Wh-antecedents & compositionality in inqSem
Wh-words as antecedents

Composing alternatives
Wh-words as antecedents

Composing alternatives
Wh-terms as antecedents

Example 1: cross-sentential anaphora

(1) a. Whoi won this year’s Masters? What was his\textsubscript{i} score?
 b. [Which writer]i won the Nobel Prize in Literature in 1969? To give you a hint: He\textsubscript{i} was Irish.
 c. A: Whoi did John marry?
 B: I don’t think you know her\textsubscript{i}.
Wh-terms as antecedents

Example 2: intra-sentential anaphora

(2) a. Wer belegte welchen2 Kurs und schloss ihn\textsubscript{2} erfolgreich ab?
 who took which2 course and finished him successfully up
 ‘Who1 took which2 course and finished it\textsubscript{2} successfully?’

 b. [Q [who1 owns what2 and likes it\textsubscript{2}]]
Intra-clausal anaphora

(3) \([Q [\text{who}^1 \text{ owns what}^2 \text{ and likes it}^2]]\)

(4) a. own \(\mapsto \lambda Q_{ssett} \lambda v_e. Q(i)(\lambda i_s \lambda v'_e.[|\text{own}_{et}(i, v, v')|])\)
 b. it\(n \mapsto \lambda P_{s\langle et\rangle}. P(i)(u_n)\)
 c. and \(\mapsto \lambda p \lambda q.p(i); q(i)\)
 d. who\(n \mapsto \lambda P_{set}.[\exists u_n(P(i)(u_n))\]
 \(\mapsto \lambda P_{set}.[u_n|]; P(i)(u_n)\)
 e. Q \(\mapsto \lambda p_t \lambda j.[|p(i) \Leftrightarrow p(j)|]\)

(5) \(\lambda j.[u_1, u_2|\text{own}\{i, u_1, u_2\}, \text{like}\{i, u_1, u_2\}] \Leftrightarrow [u_1, u_2|\text{own}\{j, u_1, u_2\}, \text{like}\{j, u_1, u_2\}]\)
Intra-clausal anaphora

(6) \[Q [\text{who}^1 \text{ owns } \text{what}^2 \text{ and likes } \text{it}_2]]

(7) a. John – a bike
b. Mary – a computer, headphones
c. Bill – a book, a dvd
Cross-clausal anaphora

(8) a. Whoi was at the party? Did he$_i$ dance?
b. Mary knows whoi was at the party and that he$_i$
danced.
 ‘There is a single person who was at the party and Mary knows who it was and that he danced.’
Cross-clausal anaphora

(9) Mary knows whoi was at the party and that he\textsubscript{i} danced.

(10) \lambda j([[u_1 | at-party\{i, u_1\}]] \Leftrightarrow [[u_1 | at-party\{j, u_1\}]]; [[dance\{j, u_1\}]]}
Two issues in cross-sentential anaphora

(11) Mary knows who \(i\) was at the party and that he \(i\) danced.

1. Wh-questions are dynamic beyond the questions
2. Anaphoric pronouns restrict the cardinality of wh-words
Solving issue 1 – wh-questions extend contexts

(12) A: Who won?
 B: #Somebody won.
Solving issue 1 – wh-questions extend contexts

(12) A: Who won?
 B: #Somebody won.

(13) Modified translation of Q
 a. Q ⊨ λp t λj.[|p(i) ≡ p(j)]; p(i)
Solving issue 2 – cardinality

(14) A: Who was at the party and did he/they dance?

We will assume that discourse referents can have both singular and plural individuals as their value.
A note on singular and plural entities

Both singular and plural entities in the domain of D_e

(15) a. We will use $a \sqcup b$ (the sum of a and b) to represent the plural individual that has a and b as its parts.

b. We will use \sqsubseteq as the part-of relation:
 \[a \sqsubseteq b : \iff a \sqcup b = b \]

c. We will use Atom as a predicate that checks whether an entity is atomic:
 \[\text{Atom}(x) := \lambda x. \forall y [y \sqsubseteq x \rightarrow y = x]. \]
A note on singular and plural entities
Cross-clausal anaphora

(16) Some people left. They were tired.

Anaphora picks up the maximal entity
Cross-clausal anaphora

(17) a. $Q \leadsto \lambda p_t \lambda j. [[p(i) \iff p(j)]; p(i)]$
 b. $\text{who}^n \leadsto \lambda P_{set}. \text{max}^n(P(i)(u_n))$
 c. $\text{max}^n(D) := \lambda kk'. ([u_n]; D)kk' \land$
 $\forall k''(([u_n]; D)kk'' \rightarrow u_nk'' \sqsubseteq u_nk')$
 d. $\text{he}_n \leadsto \lambda P_{s<et}>. [\text{Atom}\{u_n\}; P(i)(u_n)]$
 e. $\text{they}_n \leadsto \lambda P_{s<et}>. [\lnot \text{Atom}\{u_n\}; P(i)(u_n)]$
Cross-clausal anaphora

(18) Mary knows whoi won and that he\textsubscript{i} danced.
Cross-clausal anaphora

(18) Mary knows who\(^i\) won and that he\(^i\) danced.

(19) \[\lambda j[\text{max}^1([|\text{win}\{i, u_1\}])] \Leftrightarrow \text{max}^1([|\text{win}\{j, u_1\}])]; \]
\[\text{max}^1([|\text{win}\{i, u_1\}]); \]
\[[|\text{Atom}\{u_1\}, \text{dance}\{j, u_1\}] \]
Open issues

Wh-questions with quantifiers

(20) What did every student read?
 a. What was the thing that every student read?
 b. For every student x, what did x read?
Open issues

Yes-no questions

(21) Mary knows whether John danced.

(22) \(\lambda j[[[\text{\textit{dance}}\{i, J\}] \leftrightarrow [\text{\textit{dance}}\{j, J\}]]] \)

(23) Mary knows whether somebody danced and that he wore a scarf.

(24) A: Did somebody dance?
 B: Yes.
Wh-words as antecedents

Composing alternatives
Composing alternatives

1. the semantic value of a complete sentence is a set of propositions;
2. other expressions receive corresponding types
Types, examples

<table>
<thead>
<tr>
<th>Type (Abbreviated)</th>
<th>Name</th>
<th>Constant</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle \text{st} \rangle)</td>
<td>Propositions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T := \langle \langle \text{st} \rangle t \rangle)</td>
<td>Sentences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\langle eT \rangle)</td>
<td>Predicates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e\langle eT \rangle)</td>
<td>Relations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\langle \langle eT \rangle T \rangle)</td>
<td>Quantifiers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p)</td>
<td>farmer, sleeps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q)</td>
<td>loves, owns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P)</td>
<td>everybody</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Q)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abbreviations

(25) a. \(\lbrack p \rbrack := \lambda \rho'. \forall i(p'(i) \rightarrow p(i)) \)
\[= \lambda \rho'. \rho' \subseteq |p| = \{|p|\} \]
b. \(q \lor q' := \lambda p. q(p) \lor q'(p) \)
c. \(q \land q' := \lambda p. q(p) \land q'(p) \)
d. \(\sim q := \lambda p. \forall p' \in q[\neg \exists i[p'(i) \land p(i)]] \)
e. \(\sqcap_{\tau \langle \tau \tau \rangle} = \land \) if \(\tau = T \) or
\[\lambda X \lambda Y \lambda Z_{\sigma_1}. X(Z) \sqcap Y(Z) \) if \(\tau = \sigma_1\sigma_2 \) and \(\tau \) ends in \(T \)
Interpretations, examples

(26) a. $\llbracket \text{walk} \rrbracket = \lambda x./Wx/$
b. $\llbracket \text{man} \rrbracket = \lambda x./Mx/$
c. $\llbracket \text{see} \rrbracket = \lambda y\lambda x./S(x, y)/$

(27) $\llbracket \text{john} \rrbracket = j$

(28) Connectives
a. $\llbracket \text{or} \rrbracket = \lambda X\lambda Y.X \sqcup Y$
b. $\llbracket \text{and} \rrbracket = \lambda X\lambda Y.X \sqcap Y$
c. $\llbracket \text{not}_{TT} \rrbracket = \lambda q. \sim q$
Example

(29) John danced or sang.
Abbreviations and interpretations, quantifiers

(30)
\[\exists x \phi := \lambda p. \exists x[\phi(p)] \]
\[\forall x \phi := \lambda p. \forall x[\phi(p)] \]

(31)
Quantifiers

\[\text{[somebody]} = \lambda P e T. \exists x(Px) \]
\[\text{[who]} = \lambda P e T. \exists x(Px) \]
\[\text{[everyone]} = \lambda P e T. \forall x[P(x)] \]
Example

(32) Somebody danced.